博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
周志华《机器学习》第一章小结
阅读量:4987 次
发布时间:2019-06-12

本文共 481 字,大约阅读时间需要 1 分钟。

   若需预测离散值,此类学习任务称为分类;若需预测连续值,此类学习任务称为回归。

   学得模型后,使用其进行预测的过程称为测试,被预测的样本称为测试样本。

   根据训练数据是否拥有标记信息,学习任务可大致分为:监督学习和无监督学习,分类和回归是前者的代表,聚类是后者的代表。

   学得模型适用于新样本的能力,称为“泛化”能力。

   任何一个有效的机器学习算法必有其归纳偏好,否则它将被假设空间中看似在训练集上“等效”的假设所迷惑,而无法产生确定的学习结果。“奥卡姆剃刀”认为:若有多个假设与观察一致,则选择最简单的那个。

   NFL(No Free Lunch Theorem)没有免费午餐定理,表明:无论学习算法a多聪明、学习算法b多笨拙,它们的期望性能相同。但是有一个前提:所以问题的出现机会相同、或所有问题同等重要。NFL定理的重要寓意,让我们清楚地认识到,脱离具体的问题,空泛地谈论“什么学习算法更好”毫无意义,因为若考虑所有潜在的问题,则所有学习算法都一样好。

转载于:https://www.cnblogs.com/lijunqiang1997/p/7890094.html

你可能感兴趣的文章
个人使用angular的一些小总结
查看>>
webservice wsdl axis2报错 Provider com.bea.xml.stream.MXParserFactory not found
查看>>
EOS1.1版本新特性介绍
查看>>
929. Unique Email Addresses
查看>>
3.常见的ORM框架
查看>>
Hdu 1326 Box of Bricks
查看>>
常用数据结构算法 : 堆排序
查看>>
Highcharts X轴名称太长,如何设置下面这种样式
查看>>
使用模板类,创建树。使用头文件分离模板类的申明与实现时出错
查看>>
王者的世界:全球十大对冲基金公司传奇
查看>>
Lua相关图书推荐
查看>>
CentOS安装phpMyAdmin
查看>>
JSTL标签
查看>>
RTT之柿饼UI
查看>>
C51 笔记
查看>>
wkhtmltopdf导出html到pdf
查看>>
Flutter 目录结构介绍、入口、自定义 Widget、MaterialApp 组件、Scaffold 组件
查看>>
小记5.8面试
查看>>
关于Windows7下创建Cocos2D-X项目的小问题
查看>>
java之大文件断点续传
查看>>